RSS Feed

Related Articles

Related Categories

Researchers use simple chemicals to minimise organ damage following heart attack and stroke

6th November 2014 Print
Arteries

Scientists have identified chemicals that could protect vital organs from long-term damage following a heart attack or stroke, according to new research in mice, part-funded by the British Heart Foundationopens in new window (BHF) and Medical Research Council (MRC).

The researchers now hope the chemicals will provide a starting point for developing new injectable drugs that could be used to prevent some of the long-term damage caused by heart attack and stroke.

During a heart attack or stroke, a clot can starve the heart or brain of blood and oxygen, causing irreversible damage. Further damage is caused when the clot is dislodged and blood rushes back into the heart or brain. Until now, it was unclear how the return of blood flow starts this damage.

In research published today in Nature, scientists led by teams at the MRC Mitochondrial Biology Unitopens in new window, MRC Cancer Unitopens in new window and the University of Cambridgeopens in new window, are the first to find that this damage is caused by a build up of a chemical called succinate. Succinate occurs naturally in the body when sugar and fat is broken down to release the energy stored in food.

The research shows that succinate builds up to abnormally high levels inside an organ when blood flow is limited. When the blood flow returns, the excessive build-up of succinate interacts with oxygen as the blood rushes in to the oxygen-starved tissues. This causes the release of destructive molecules which react with muscle cells in the organ, damaging them.

In the months and years after a heart attack, this damage can ultimately lead to heart failure, a debilitating condition that leaves people unable to carry out everyday tasks like washing themselves or climbing stairs.

The researchers identified the increase in succinate by measuring a range of different chemicals in the vital organs before and after heart attack and stroke, in a technique called metabolomics.

Crucially, the researchers have discovered that they can reduce organ damage in mice and rats by administering simple chemicals, called malonate esters, when blood flow is restored. Malonate esters stop the build-up of succinate and the resulting release of destructive molecules.

Malonate esters are cheap, readily available and are found naturally in fruits like strawberries, apples and grapes, although not in high enough volumes to be beneficial.

The findings could also have implications in surgery where transplanted organs such as the kidney, liver and the heart all suffer damage after they are connected to the transplant patient’s blood flow.3

Dr Michael Murphy from the MRC Mitochondrial Biology Unit, co-author on the research paper said:

“This research explains how organ damage occurs during the first few minutes of restoring blood supply after a heart attack or stroke and, importantly, how to stop this damage.

“We have used simple chemicals found in everyday fruits like apples and grapes, that had never been suspected as being therapeutically useful before. Amazingly, these chemicals worked very well.”

BHF-funded researcher, Dr Thomas Krieg at the University of Cambridge and co-author of the study said:

“Now that we know the specific cause of organ damage after heart attacks and strokes, we can start developing effective drugs to treat the serious after-effects of these conditions.

“There are currently no drugs routinely used that block this cause of damage. But our research shows that simple, cheap chemicals could significantly improve the outcome of patients suffering a heart attack or stroke. We now hope to develop this research further, leading to an effective treatment for people within 5 to 10 years."

Professor Jeremy Pearson, Associate Medical Director at the BHF, which part-funded the study, said:

“This is an important breakthrough. By discovering a way to limit severe organ damage following a heart attack or stroke, the scientists have paved the way for translation of these results into treatments for the hundreds of thousands of people who suffer from heart attacks and stroke in the UK every year. Further research is now needed before trialling this treatment in patients.”       

The research team included scientists from the MRC, the University of Cambridge, King's College London, University College London, the University of Rochester Medical Centre, the University of Glasgow and Addenbrooke’s Hospital in Cambridge and was funded by the British Heart Foundation, MRC, the Canadian Institutes of Health Research and the Gates Cambridge Trust.

More Photos - Click to Enlarge

Arteries